numerical dispersion meaning in Chinese
数值弥散
数值色散
Examples
- Simulation research on numerical dispersion for modeling of wave guide devices by fdtd
法建模波导器件时数值色散的仿真研究 - The suppression of numerical dispersion and improvement of absorbing boundary conditions in forward modeling of gpr
地质雷达正演中的频散压制和吸收边界改进方法 - First , we reviewed the finite - difference time - domain yee ' s method . the difference equations , the stability condition , numerical dispersion characteristics , absorbing boundary conditions , incident wave source conditions and the calculation of the frequency - dependent scattering parameters are discussed
首先本文回顾了时域有限差分yee算法,包括时域有限差分的差分方程、稳定性条件、数值色散特性、吸收边界条件,激励源的设置以及散射参数的计算等。 - In chapter one , we propose a new mixed method called characteristics mixed finite element method for a convection - dominated diffusion problems with small parameter e : we handle the convection part whth backward difference scheme along the characteristics , obtain much smaller time - trunction errors and avoid numerical dispersion on the front of the peak curve of the flow : we use a lowest order mixed finite element method to deal with the diffusion part , so this scheme can approximate the unknow function and its following vector with high accuracy at the same time
第一章中我们对小参数对流占优扩散问题提出了新的数值方法? ?特征混合有限元方法,即对方程的对流部分采用沿特征线的后退差分格式求解,以保证较小的截断误差限并避免了在流动的锋线前沿数值弥散现象的出现;对流动的扩散部分采用最低次混合元方法求解,以保证格式对未知函数及伴随向量的同时高精度逼近。由于该方法中检验函数可取分片常数,此格式在某种意义上具有局部守恒性质。 - Important missing aspects are : turbulent flow , numerical discretization techniques specially the relevant and difficult topic of numerical treatment of advection and related numerical methods of solution , variable property fluids , boundary layers , stability , etc . rather , it focuses on more primitive and fundamental issues of numerical treatment of advective equation and proper formulation of initial boundary value ( ib vp ) . numerical problems associated with advective dominated transport include spurious oscillation , numerical dispersion , peak clipping , and grid oriention . however , the key of numerical solution of three - dimensional advective problem is searching for a high - precision interpolating function , which can keep the computational stability and low damping
3 、针对三维纯对流方程提出了实用的拟协调单元模式,并与线性插值模式和协调单元模式比较后表明,在物理量大梯度变化的情况下,线性插值模式会产生较大的数值阻尼,导致解的失真;协调单元模式具有极高的计算精度和良好的计算稳定性,还可较好地克服数值阻尼,但由于计及物理量的二阶导数项,计算工作量大,边界条件给定尚存在一定的困难;而拟协调单元模式不仅具有协调单元模式计算精度高的优点,还避免了物理量的二阶导数项,可大大地减少计算工作量。